Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing-Li Cheng, ${ }^{\text {a }}$ Cheng-Xia Tan ${ }^{\text {b }}$ and Guo-Nian Zhu ${ }^{\text {a* }}$

${ }^{\text {a }}$ College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zhgn@zj.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.075$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Benzoyl-1,3-oxazolidin-2-one

The non-planar title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}$, prepared from a condensation reaction of benzoyl chloride and oxazolidin-2one, has longer than usual $\mathrm{C}-\mathrm{N}$ bond lengths compared with typical acylamine groups.

Comment

Oxazolidinone derivatives have a high potential for biological activity, e.g. they have been widely used as pesticides and fungicides (Edwin \& Bing, 1963). As a continuation of our work on the structure-activity relationship of thiazolidinone derivatives, the structure of a colourless crystalline compound, (I), which was the product of the condensation reaction between benzoyl chloride and 2-oxazolidinone, was determined.

(I)

The molecular structure of (I) (Fig. 1 and Table 1) establishes the molecular connectivity. The molecule is non-planar, as seen in the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ torsion angles of $-30.23(15)$ and $-50.48(13)^{\circ}$, respectively. The most notable feature of (I) is that the average $(\mathrm{O}=\mathrm{C})-\mathrm{N}$ bond length of 1.4211 (16) \AA is greater than the $\mathrm{C}-\mathrm{N}$ singlebond length (1.33-1.35 \AA) of a typical acylamine group.

Experimental

2-Oxazolidinone ($0.44 \mathrm{~g}, 5 \mathrm{mmol}$), prepared according to the procedure of Homeyer (1946), and triethylamine ($0.72 \mathrm{~g}, 7 \mathrm{mmol}$) were dissolved in dichloromethane (20 ml) with stirring. Benzoyl chloride ($0.85 \mathrm{~g}, 6 \mathrm{mmol}$) was added dropwise to the mixture in an ice bath. The mixture was stirred at 273 K for 10 h , washed with water three times and then dried in vacuo to give a solid (yield $90.1 \%, 0.86 \mathrm{~g}$), which was then recrystallized from ethanol to give colourless blocks (m.p. 447-448 K).

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}$
$M_{r}=191.19$
Monoclinic, $P 2_{1} / c$
$a=13.305(7) \AA$
$b=5.676(4) \AA$
$c=12.455(6) \AA$
$\beta=107.784(16)^{\circ}$
$V=895.7(9) \AA^{\circ}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.952, T_{\text {max }}=0.984$
8404 measured reflections
$D_{x}=1.418 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6957 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Block, colourless
$0.24 \times 0.23 \times 0.15 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
2051 reflections
126 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

O1-C1	$1.1958(15)$	C4-C5	$1.4835(17)$
O2-C1	$1.3377(15)$	C5-C6	$1.3845(16)$
O2-C2	$1.4472(15)$	C5-C10	$1.3882(16)$
O3-C4	$1.2156(15)$	C6-C7	$1.3783(18)$
N1-C1	$1.3888(14)$	C7-C8	$1.3793(18)$
N1-C3	$1.4600(16)$	C8-C 9	$1.3726(19)$
N1-C4	$1.3822(16)$	C9-C10	$1.3844(19)$
C2-C3	$1.5044(19)$		
C1-O2-C2	$110.45(9)$	O2-C1-N1	$108.66(9)$
C1-N1-C3	$110.92(9)$	O2-C2-C3	$105.64(10)$
C1-N1-C4	$126.00(9)$	N1-C3-C2	$101.05(9)$
C3-N1-C4	$120.51(9)$	O3-C4-N1	$118.74(12)$
O1-C1-O2	$123.06(10)$	O3-C4-C5	$121.77(11)$
O1-C1-N1	$128.25(11)$	N1-C4-C5	$119.36(10)$

H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.97$ and $0.98 \AA$ for methylene and aromatic H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ of the parent atom.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku \& Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalStructure.

The authors are grateful for support from the Education Bureau Foundation of Zhejiang Province (No. 20030145).

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Edwin, D. L. \& Bing, T. P. (1963). US Patent No. 3108115.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Homeyer, A. H. (1946). US Patent No. 2399118.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku \& Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan, and Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.

